强保证的代码多使用了一个局部变量tmp,先计算出目标状态放在tmp中,然后在安全进入目标状态,这个过程我们并没有损失什么东西(代码清晰性,性能等等)。看上去,实现强保证并不比基本保证困难多少,一般而言,也确实如此。不过,别太自信,举一种典型的很难实现强保证的例子,对于区间操作的强保证:
for (itr = range.begin(); itr != range.end(); ++itr){
itr->do_something();
}
如果某个do_something失败了,range将处于什么状态?这段代码仍然做到了基本保证,但不是强保证的,根据实现强保证的基本原则,我们可以这么做:
tmp = range;
for (itr = tmp.begin(); itr != tmp.end(); ++itr){
itr->do_something();
}
swap(tmp, range);
似乎很简单啊!呵呵,这样的做法并非不可取,只是有时候行不通。因为我们额外付出了性能的代价,而且,这个代价可能很大。无论如何,我们阐述了实现强保证的方法,怎么取舍则由您决定了。
接下来讨论最后一种异常安全保证:不会失败。
通常,我们并不需要这么强的安全保证,但是我们至少必须保证三类过程不会失败:析构函数,释放类函数,swap。析构和释放函数不会失败,这是RAII技术有效的基石,swap不会失败,是为了“在决不失败的过程中,把对象替换到目标状态”。我们前面的所有讨论都是建立在这三类过程不会失败的基础上的,在这里,弥补了上面的那个疏漏。
一般而言,语言内部类型的赋值、取地址等运算是不会发生异常的,上述三类过程逻辑上也是不会发生异常的。内部运算中,除法运算可能抛出异常。但是地址访问错通常是一种错误,而不是异常,我们本应该在前条件检查中就发现的这一点的。所有不会发生异常操作的简单累加,仍然不会导致异常。
好了,现在我们可以总结一下编写异常安全代码的几条准则了:
1.只在应该使用异常的地方抛出异常
2.如果不知道如何处理异常,请不要捕获(截留)异常。
3.充分使用RAII,旁路异常。
4.努力实现强保证,至少实现基本保证。
5.确保析构函数、释放类函数和swap不会失败。
另外,还有一些语言细节问题,因为和这个主题有关也一并列出:
1.不要这样抛出异常:throw new exception;这将导致内存泄漏。
2.自定义类型,应该捕获异常的引用类型:catch(exception& e)或catch(const exception& e)。
3.不要使用异常规范,即使是空异常规范。编译器并不保证只抛出异常规范允许的异常,更多内容请参考相关书籍。