好学IT学院:IT信息技术分享交流平台
来源:fly_miss的Blog  作者:fly_miss  发布时间:2008-08-29  ★★★加入收藏〗〖手机版
摘要:(一)深入浅出理解索引结构实际上,您可以把索引理解为一种特殊的目录。微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索……


 在确定了第三种分页方案后,我们可以据此写一个存储过程。大家知道SQL SERVER的存储过程是事先编译好的SQL语句,它的执行效率要比通过WEB页面传来的SQL语句的执行效率要高。下面的存储过程不仅含有分页方案,还会根据页面传来的参数来确定是否进行数据总数统计。

-- 获取指定页的数据

CREATE PROCEDURE pagination3 
@tblName   varchar(255),     -- 表名 
@strGetFields varchar(1000) = '*',  -- 需要返回的列 
@fldName varchar(255)='',    -- 排序的字段名 
@PageSize   int = 10,        -- 页尺寸 
@PageIndex  int = 1,         -- 页码 
@doCount  bit = 0,   -- 返回记录总数, 非 0 值则返回 
@OrderType bit = 0,  -- 设置排序类型, 非 0 值则降序 
@strWhere  varchar(1500) = ''  -- 查询条件 (注意: 不要加 where)

AS

declare @strSQL   varchar(5000)     -- 主语句 
declare @strTmp   varchar(110)      -- 临时变量 
declare @strOrder varchar(400)      -- 排序类型

if @doCount != 0 
  begin 
  if @strWhere !='' 
  set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere 
  else 
  set @strSQL = "select count(*) as Total from [" + @tblName + "]" 
end  
--以上代码的意思是如果@doCount传递过来的不是0,就执行总数统计。以下的所有代码都是@doCount为0的情况

else 
begin
  if @OrderType != 0 
  begin 
  set @strTmp = "<(select min" set @strOrder = " order by [" + @fldName +"] desc" 
  --如果@OrderType不是0,就执行降序,这句很重要! 
  end 
 else 
 begin 
  set @strTmp = ">(select max" 
   set @strOrder = " order by [" + @fldName +"] asc" 
 end 
if @PageIndex = 1 
begin 
  if @strWhere != ''   
     set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from [" + @tblName + "] where " + @strWhere + " " + strOrder 
    else 
   set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from ["+ @tblName + "] "+ @strOrder 
--如果是第一页就执行以上代码,这样会加快执行速度 
end 
else 
begin 
--以下代码赋予了@strSQL以真正执行的SQL代码 
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from [" 
  + @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "] from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder   
if @strWhere != '' 
  set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from [" 
      + @tblName + "] where [" + @fldName + "]" + @strTmp + "([" 
      + @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " [" 
      + @fldName + "] from [" + @tblName + "] where " + @strWhere + " " 
      + @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder 
end 
end

exec (@strSQL)

GO

上面的这个存储过程是一个通用的存储过程,其注释已写在其中了。

在大数据量的情况下,特别是在查询最后几页的时候,查询时间一般不会超过9秒;而用其他存储过程,在实践中就会导致超时,所以这个存储过程非常适用于大容量数据库的查询。

笔者希望能够通过对以上存储过程的解析,能给大家带来一定的启示,并给工作带来一定的效率提升,同时希望同行提出更优秀的实时数据分页算法。

四、聚集索引的重要性和如何选择聚集索引

在上一节的标题中,笔者写的是:实现小数据量和海量数据的通用分页显示存储过程。这是因为在将本存储过程应用于“办公自动化”系统的实践中时,笔者发现这第三种存储过程在小数据量的情况下,有如下现象:

1、分页速度一般维持在1秒和3秒之间。

2、在查询最后一页时,速度一般为5秒至8秒,哪怕分页总数只有3页或30万页。

虽然在超大容量情况下,这个分页的实现过程是很快的,但在分前几页时,这个1-3秒的速度比起第一种甚至没有经过优化的分页方法速度还要慢,借用户的话说就是“还没有ACCESS数据库速度快”,这个认识足以导致用户放弃使用您开发的系统。

笔者就此分析了一下,原来产生这种现象的症结是如此的简单,但又如此的重要:排序的字段不是聚集索引!

本篇文章的题目是:“查询优化及分页算法方案”。笔者只所以把“查询优化”和“分页算法”这两个联系不是很大的论题放在一起,就是因为二者都需要一个非常重要的东西――聚集索引。

在前面的讨论中我们已经提到了,聚集索引有两个最大的优势:

1、以最快的速度缩小查询范围。

2、以最快的速度进行字段排序。

第1条多用在查询优化时,而第2条多用在进行分页时的数据排序。

而聚集索引在每个表内又只能建立一个,这使得聚集索引显得更加的重要。聚集索引的挑选可以说是实现“查询优化”和“高效分页”的最关键因素。

但要既使聚集索引列既符合查询列的需要,又符合排序列的需要,这通常是一个矛盾。

笔者前面“索引”的讨论中,将fariqi,即用户发文日期作为了聚集索引的起始列,日期的精确度为“日”。这种作法的优点,前面已经提到了,在进行划时间段的快速查询中,比用ID主键列有很大的优势。

但在分页时,由于这个聚集索引列存在着重复记录,所以无法使用max或min来最为分页的参照物,进而无法实现更为高效的排序。而如果将ID主键列作为聚集索引,那么聚集索引除了用以排序之外,没有任何用处,实际上是浪费了聚集索引这个宝贵的资源。

为解决这个矛盾,笔者后来又添加了一个日期列,其默认值为getdate()。用户在写入记录时,这个列自动写入当时的时间,时间精确到毫秒。即使这样,为了避免可能性很小的重合,还要在此列上创建UNIQUE约束。将此日期列作为聚集索引列。

有了这个时间型聚集索引列之后,用户就既可以用这个列查找用户在插入数据时的某个时间段的查询,又可以作为唯一列来实现max或min,成为分页算法的参照物。

经过这样的优化,笔者发现,无论是大数据量的情况下还是小数据量的情况下,分页速度一般都是几十毫秒,甚至0毫秒。而用日期段缩小范围的查询速度比原来也没有任何迟钝。

聚集索引是如此的重要和珍贵,所以笔者总结了一下,一定要将聚集索引建立在:

1、您最频繁使用的、用以缩小查询范围的字段上;

2、您最频繁使用的、需要排序的字段上。

结束语:

本篇文章汇集了笔者近段在使用数据库方面的心得,是在做“办公自动化”系统时实践经验的积累。希望这篇文章不仅能够给大家的工作带来一定的帮助,也希望能让大家能够体会到分析问题的方法;最重要的是,希望这篇文章能够抛砖引玉,掀起大家的学习和讨论的兴趣,以共同促进,共同为公安科技强警事业和金盾工程做出自己最大的努力。

最后需要说明的是,在试验中,我发现用户在进行大数据量查询的时候,对数据库速度影响最大的不是内存大小,而是CPU。在我的P4 2.4机器上试验的时候,查看“资源管理器”,CPU经常出现持续到100%的现象,而内存用量却并没有改变或者说没有大的改变。即使在我们的HP ML 350 G3服务器上试验时,CPU峰值也能达到90%,一般持续在70%左右。

本文的试验数据都是来自我们的HP ML 350服务器。服务器配置:双Inter Xeon 超线程 CPU 2.4G,内存1G,操作系统Windows Server 2003 Enterprise Edition,数据库SQL Server 2000 SP3。

  • 好学触屏公众号虎力全开、杨帆起航!
  • 好学考试H5触屏版开放内测